Geochemical Controls on the Partitioning and Hydrological Transport of Metals in a Human Impacted, Non-Acidic, River System

Thursday, 18 December 2014
Josefin Thorslund1, Jerker Jarsjo1, Teresia Wällstedt2, Carl Magnus Morth3, Mikhail Lychagin4 and Sergey Chalov4, (1)Stockholm University, Stockholm, Sweden, (2)Stockholm University, Department of Applied Environmental Science, Stockholm, Sweden, (3)Stockholm University, Department of Geological Sciences, Stockholm, Sweden, (4)Lomonosov Moscow State University, Moscow, Russia
The knowledge of coupled processes controlling the spreading and fate of metals in non-acidic river systems is currently much more limited than the knowledge of metal behavior under acidic conditions (e.g., in acid mine drainage systems). Critical geochemical controls governing metal speciation may thus differ substantially between acidic and non-acidic hydrological systems. We here aim at expanding the knowledge of metals in non-acidic river systems, by considering a high pH river, influenced by mining by the largest gold mining area in the Mongolian part of the transboundary Lake Baikal drainage basin. The combined impact of geochemical and hydrological processes is investigated, to be able to understand the solubility of various heavy metals, their partitioning between particulate and dissolved phase and its impact on overall transport. We show, through site specific measurements and a geochemical modelling approach, that the combined effects of precipitation of ferrihydrite and gibbsite and associated sorption complexes of several metals can explain the high impact of suspended transport relative to total transport often seen under non-acidic conditions. Our results also identifies the phosphate mineral Hydroxyapatite as a potential key sorption site for many metals, which has both site specific and general relevance for metal partitioning under non-acidic conditions. However, an adsorption database, which is currently unavailable for hydroxyapatite, needs to be developed for appropriate sorption quantification. Furthermore, Cd, Fe, Pb and Zn were particularly sensitive to increasing DOC concentrations, which increased the solubility of these metals due to metal-organic complexation. Modeling the sensitivity to changes in geochemical parameters showed that decreasing pH and increasing DOC concentrations in downstream regions would increase the dissolution and hence the toxicity and bioavailability of many pollutants of concern in the downstream ecosystem. In general, this study suggests that in non-acidic hydrological systems, both seasonality of DOC concentrations (which could vary by several 100%), changing DOC concentrations (resulting from climate and land use changes) and potential phosphate solids can majorly influence on the spreading and toxicity of several metals.