PA51A-4042:
Continued global warming after CO2 emissions stoppage

Friday, 19 December 2014
Thomas L Froelicher, ETH Swiss Federal Institute of Technology Zurich, Zurich, Switzerland, Michael Winton, NOAA/GFDL, Princeton, NJ, United States and Jorge L Sarmiento, Princeton Univ, Princeton, NJ, United States
Abstract:
Recent studies have suggested that global mean surface temperature would remain approximately constant on multi-century timescales after CO2 emissions are stopped. These studies suggest that the cooling effect of reduction in radiative forcing due to the decrease in atmospheric CO2 is roughly balanced by the warming effect of reduction in ocean heat uptake.

Here we use Earth system model simulations of such a stoppage to demonstrate that in some models, surface temperature may actually increase on multi-century timescales after an initial century-long decrease. For example, global mean surface temperature may increase by 0.6°C after carbon emissions are stopped at 2°C above preindustrial. Surprisingly, the temperature increase occurs in spite of a decline in radiative forcing that exceeds the decline in ocean heat uptake—a circumstance that would otherwise be expected to lead to a decline in global temperature. The reason is that the warming effect of decreasing ocean heat uptake together with feedback effects arising in response to the geographic structure of ocean heat uptake overcompensates the cooling effect of decreasing atmospheric CO2 on multi-century timescales in these models. We show that ocean heat uptake, which occurs preferentially at subpolar latitudes, has a larger temperature impact per watt per square meter than the CO2 radiative forcing. In other words, the cooling effect of a high-latitude heat sink is larger than that of an equivalent tropical heat sink.

The implications of our results for estimates of allowable carbon emissions required to remain below a specific global warming target will be discussed.