NH13B-03:
Uncertainty in volcanic ash particle size distribution and implications for infrared remote sensing and airspace management
NH13B-03:
Uncertainty in volcanic ash particle size distribution and implications for infrared remote sensing and airspace management
Monday, 15 December 2014: 2:08 PM
Abstract:
Volcanic ash particle size distributions are critical in determining the fate of airborne ash in drifting clouds. A significant amount of global airspace is managed using dispersion models that rely on a single ash particle size distribution, derived from a single source - Hobbs et al., 1991. This is clearly wholly inadequate given the range of magmatic compositions and eruptive styles that volcanoes present. Available measurements of airborne ash lognormal particle size distributions show geometric standard deviation values that range from 1.0 – 2.5, with others showing mainly polymodal distributions. This paucity of data pertaining to airborne sampling of volcanic ash results in large uncertainties both when using an assumed distribution to retrieve mass loadings from satellite observations and when prescribing particle size distributions of ash in dispersion models. Uncertainty in the particle size distribution can yield order of magnitude differences to mass loading retrievals of an ash cloud from satellite observations, a result that can easily reclassify zones of airspace closure. The uncertainty arises from the assumptions made when defining both the geometric particle size and particle single scattering properties in terms of an effective radius. This has significant implications for airspace management and emphasises the need for an improved quantification of airborne volcanic ash particle size distributions.