B43A-0214:
Understanding the Impacts of Land Uses on the Source Apportionment of Atmospheric Contamination By Polycyclic Aromatic Hydrocarbons throughout a Small State in the Northeast United States

Thursday, 18 December 2014
Laura A Schifman1 and Thomas B Boving1,2, (1)University of Rhode Island, Geosciences, Kingston, RI, United States, (2)University of Rhode Island, Civil, Civil and Environmental Engineering, Kingston, RI, United States
Abstract:
Polycyclic aromatic hydrocarbons (PAH) are ubiquitous contaminants that enter the environment through combustion processes and are often found in higher concentration of urban areas. However, once released, these compounds can travel long distances via transport through the atmosphere and can be deposited on the landscape far away from their original source. This PAH deposition pattern can slowly lead to the diffuse contamination of whole landscapes. Since most of the air masses entering the northeastern United States originate from the Midwest where coal burning power plants are plentiful, several atmospheric pollutants are introduced to the region in addition to local sources. Here, atmospheric deposition of PAHs in six different locations throughout Rhode Island was measured using passive bulk-deposition samplers for 3 years. The data were analyzed statistically by principal component analysis and factor analysis to identify the source of contamination and respective apportionment. The data clearly show that an urban–to- rural gradient exists where deposition rates are significantly higher in urban areas (up to 12325 ng/d m2 ∑PAH) compared to rural areas (as low as 11 ng/d m2 ∑PAH) and also follow seasonal trends that show higher deposition rates in the fall and winter compared to the summer and spring time. Further, based on PAH source apportionment ratios, contamination origins differ spatially. For example, fossil fuel, coal, and vehicle combustion is present in all samples; however fossil fuel combustion is dominant in urban samples. In Rural areas biomass combustion is much more prevalent and is not as greatly represented in urban or suburban areas. Therefore, even in a small state such as Rhode Island airborne PAH contamination can be fingerprinted readily for different sampling areas, indicating that distant emission sources have a widespread impact on regional air quality.