Using Long-Term Observations of VOCs from the CARIBIC Observatory to Refine Understanding of Transport and Chemistry in the UT/LS

Thursday, 18 December 2014: 9:30 AM
Angela Kathleen Baker1, Ute R Thorenz1, Carina Sauvage1, Hella Riede1, Taku Umezawa1, Jonathan Williams1, Andreas Zahn2 and Carl A M Brenninkmeijer1, (1)Max Planck Institute for Chemistry, Mainz, Germany, (2)Karlsruhe Institute of Technology, Atmospheric trace gas measurements and remote sensing, Karlsruhe, Germany
Volatile organic compounds (VOCs) are ubiquitous trace components of the atmosphere, arising from a variety of natural and anthropogenic sources. Their wide range of lifetimes and specific source signatures make VOCs useful indicators of source region, photochemical histories and transport timescales of air masses. This is particularly true of the C2-C5non-methane hydrocarbons (NMHCs), which are predominantly anthropogenic in origin, have relatively well-known emission ratios, and lifetimes ranging from days to months. NMHCs are also frequently measured in an ensemble analysis, as is the case for whole air samples collected during deployments of the CARIBIC observatory (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container; www.caribic-atmospheric.com). Since 2005 the CARIBIC observatory operates from onboard a Lufthansa Airlines A340-600, where it is deployed monthly to make detailed observations of the atmosphere during a series of 2-6 long-distance commercial flights. The container operates at aircraft cruise altitudes of 10-12 km, placing the observations primarily in the upper troposphere and lowermost stratosphere (UT/LS).

There is a dearth of information about distributions of VOCs in the UT/LS, and data is generally restricted to measurements during short-term field campaigns. However, when data are available, VOC studies have proven to be well-suited to investigations in the UT/LS, where air masses are remote from sources and background air is relatively homogeneous. Here we take advantage of the over 5000 measurements of VOCs from air samples collected during nearly 10 years of CARIBIC flights in order to better understand transport and chemistry in the tropopause region. First, we use NMHC observations to identify “hot spots” for rapid transport of boundary layer air to the UT via convection or warm conveyor belts by examining the relationships of shorter-lived species to longer-lived ones and comparison to background air. Similarly, observations in the LS are used to identify instances of rapid transport across the mid-latitude tropopause and to estimate timescales of these processes. Finally, we complement our NMHC analysis with observations of CH3Cl and demonstrate its utility as a tracer for tropical air in the mid-latitude LS.