SM23A-4179:
Classification of Initial conditions required for Substorm prediction.

Tuesday, 16 December 2014
Swadesh Patra, University of Oslo, Oslo, Norway and Edmund A Spencer, University of South Alabama, Mobile, AL, United States
Abstract:
We investigate different classes of substorms that occur as a result of various drivers such as the conditions in the solar wind and the internal state of the magnetosphere ionosphere system during the geomagnetic activity. In performing our study, we develop and use our low order physics based nonlinear model of the magnetosphere called WINDMI to establish the global energy exchange between the solar wind, magnetosphere and ionosphere by constraining the model results to satellite and ground measurements. On the other hand, we make quantitative and qualitative comparisons between our low order model with available MHD, multi-fluid and ring current simulations in terms of the energy transfer between the geomagnetic tail, plasma sheet, field aligned currents, ionospheric currents and ring current, during isolated substorms, storm time substorms, and sawtooth events. We use high resolution solar wind data from the ACE satellite, measurements from the CLUSTER and THEMIS missions satellites, and ground based magnetometer measurements from SUPERMAG and WDC Kyoto, to further develop our low order physics based model.

 Finally, we attempt to answer the following questions: 1) What conditions in the solar wind influence the type of substorm event. This includes the IMF strength and orientation, the particle densities, velocities and temperatures, and the timing of changes such as shocks, southward turnings or northward turnings of the IMF. 2) What is the state of the magnetosphere ionosphere system before an event begins. These are the steady state conditions prior to an event, if they exist, which produce the satellite and ground based measurements matched to the WINDMI model. 3) How does the prior state of the magnetosphere influence the transition into a particular mode of behavior under solar wind forcing. 4) Is it possible to classify the states of the magnetosphere into distinct categories depending on pre-conditioning, and solar wind forcing conditions? 5) Can we predict the occurrence of substorms with any confidence?