T14A-01:
Earthquake signatures from fast slip and dynamic fracture propagation: state of the art

Monday, 15 December 2014: 4:00 PM
William A Griffith, University of Texas Arlington, Arlington, TX, United States and Christie D Rowe, McGill University, Montreal, QC, Canada
Abstract:
Earthquakes are dynamic slip events that propagate along fault surfaces, radiating seismic waves. The majority of energy released is expended in heating and breaking of rocks along the fault. The fracture damage is linked to transient stress conditions at the rupture tip which only exist during dynamic slip, while the frictional heating depends on high velocity slip behind the rupture tip to generate heat energy faster than it can be dissipated, causing transient local temperature rise. One might think that extensive damage and alteration would result, creating an unambiguous geological fingerprint, but in fact, there are few unequivocal indicators for past seismic slip. In 1999, the rare fault rock pseudotachylyte (melt formed when frictional heating exceeds the solidus) was the only accepted evidence (Cowan, 1999). Recently, more indicators of fossilized earthquakes have been proposed.

We define “evidence of past earthquakes” as evidence of either fast fault slip (at rates that only occur during earthquakes) or evidence of the propagation of dynamic rupture. We first summarize advances made in identifying evidence in the rock record of fast slip. Much of the work during the past 15 years has focused on integrating carefully controlled laboratory friction experiments, and constraints from numerical modeling, with field observations in an attempt to re-create structures observed in fault rocks and then relate these to the specific boundary conditions required to form them in the laboratory. This approach has yielded a number of advances in identifying textures and geochemical signatures diagnostic of fast slip via temperature rises which may not reach the bulk melting temperature of the fault rocks. Next, we focus on damage near the tip of shear ruptures propagating at velocities characteristic of earthquakes, an approach which has received less attention in the geological literature than fast slip but is equally diagnostic. Finally, we try to frame some of the remaining challenges in this field. These challenges include future work on diagnostic features of earthquake deformation along faults, but also a more philosophical discussion of what an earthquake actually is.