SH11A-4031:
Determining Charged Particle Flux Direction in MSL/RAD
Abstract:
The Radiation Assessment Detector (RAD) is an instrument onboard the Mars Science Laboratory (MSL) rover Curiosity, currently characterizing the radiation environment on the surface of Mars. The radiation entering the instrument from above consists mostly of Galactic Cosmic Rays (GCRs) modulated by the Martian atmosphere. From below, the instrument is exposed to secondary radiation produced by the interactions of the GCR with the soil. This secondary radiation gets further modulated going through the rover body before entering RAD.We developed a method of determining the direction of the charged particles measured by RAD. This method also extends the energy range possible for measurements with RAD beyond the intruments design limit. Using a combination of GEANT4 and Planetocosmics simulations, we reconstructed the expected charged particle spectra and intensities for upward and downward directed radiation which can be compared with observations. With the developed method, we are able to, for the first time, measure the upward charged particle flux with RAD both during the cruise phase and the surface science phase. Comparing the results of the simulations with the instrument data sets enables us to evaluate the simulation tools used to predict the Martian radiation envronment.