Valley aggradation in the San Gabriel Mountains, California: climate change versus catastrophic landslide

Friday, 19 December 2014
Dirk Scherler1, Michael P Lamb1, Edward J Rhodes2 and Jean-Philippe Avouac1, (1)California Institute of Technology, Pasadena, CA, United States, (2)University of California Los Angeles, Los Angeles, CA, United States
The San Gabriel Mountains (SGM) in Southern California, rate amongst the most rapidly uplifting and eroding mountains in the United States. Their steep slopes and sensitivity to wildfires, flash floods, landslides, and debris flows account for imminent hazards to nearby urban areas that might be accentuated by climatic and other environmental changes. Previous studies suggested that river terraces along the North Fork of the San Gabriel River, record temporal variations in sediment supply and river transport capacity that are representative for the SGM and related to climatic changes during the Quaternary.

Based on field observations, digital topographic analysis, and dating of Quaternary deposits, we suggest that valley aggradation in the North Fork San Gabriel Canyon was spatially confined and a consequence of the sudden supply of unconsolidated material to upstream reaches by one of the largest known landslides in the SGM. New 10Be-derived surface exposure ages from the landslide deposits, previously assumed to be early to middle Pleistocene in age, indicate at least three Holocene events at ~8-9 ka, ~4-5 ka, and ~0.5-1 ka. The oldest landslide predates the valley aggradation period, which is constrained by existing 14C ages and new luminescence ages to ~7-8 ka. The spatial distribution, morphology, and sedimentology of the river terraces are consistent with deposition from far-travelling debris flows that originated within the landslide deposits. Valley aggradation in the North Fork San Gabriel Canyon therefore resulted from locally enhanced sediment supply that temporarily overwhelmed river capacity but the lack of similar deposits in other parts of the SGM argues against a regional climatic signal. So far, there exists no evidence that in the San Gabriel Mountains, climatic changes can cause sustained increases in hillslope sediment supply that lead to river aggradation and terrace formation.