Future Water Resources Assessment for West African River Basins Under Climate Change, Population Growth and Irrigation Development

Friday, 19 December 2014
Dominik Wisser, University of Bonn, Bonn, Germany, Boubacar Ibrahim, Organization Not Listed, Washington, DC, United States and Alexander A Proussevitch, University of New Hampshire Main Campus, Durham, NH, United States
West Africa economies rely on rain-fed agriculture and are extremely vulnerable to changes in precipitation. Results from the most recent generation of regional climate models suggest increases in rainy season rainfall variability (delayed rainy season onset, increased probability of dry spells, shorter rainy season duration) despite a moderate increase in rainy season total precipitation. These changes could potentially have detrimental effects on crop yield and food security. Additional pressures on water resources come from increased demand as a result of high population growth rates (~3% per year). Increased water storage and irrigation can help improve crop yields but future assessments of water resources are needed to prioritize irrigation development as an adaptation option. Increased water abstraction, in turn can impact water availability in downstream regions so that an integrated assessment of future water availability and demand is needed. We use a set of 15 RCM outputs from the CORDEX data archive to drive WBMplus, a hydrological model and simulate water availability under climate change. Based on estimated water constraints, we develop scenarios to expand irrigated areas (from the current 1% of all croplands) and calculate the effects on water scarcity, taking into account increased demand for domestic consumption and livestock water demand, at a spatial resolution of 10 km. Results around the 2050's indicate large potential to develop irrigated areas on ground and surface water and increase local water storage without increasing water scarcity downstream for many river basins in the region that could help alleviate pressures on the cropping systems and thereby increase food security.