PP11A-1323:
Adding a New Dimension to the Study of Calcareous Plankton Response to Ocean Acidification

Monday, 15 December 2014
Rosie L Oakes1, Jeffrey M Urbanski2 and Timothy J Bralower1, (1)Pennsylvania State University Main Campus, University Park, PA, United States, (2)GE, Measurement & Control, Lewistown, PA, United States
Abstract:
Anthropogenic activities are increasing atmospheric carbon dioxide concentrations at unprecedented rates. This carbon dioxide dissolves in the ocean causing both the pH and the concentration of carbonate ions to decrease. These chemical changes make it less energetically viable for calcareous organisms to form shells. This study focuses on a particularly important group of organisms; calcareous plankton, namely planktonic foraminifera and pteropods. These organisms lie at low trophic levels and therefore their demise could cause the total collapse of the marine food chain as we know it.

The Pleistocene is defined by glacial-interglacial cycles with lower atmospheric CO2 concentrations (180 ppm) during glacials and higher concentrations (280 ppm) during interglacials. These fluctuations provide an ancient experiment assessing the response of planktonic foraminifera and pteropods to changing ocean chemistry.

Measurements of planktonic foraminiferal tests over glacial-interglacial cycles (e.g. Broecker et al., 2003) show that shell weight increases as atmospheric CO2 decreases. We take this investigation one step further by observing individual plankton shells in a nano-CT (computed tomography) scanner which provides extraordinarily detailed three-dimensional images. These images enable us to determine detailed variations in test wall thickness and test volume, as well as ontogenetic changes in shell morphology as a response to changing atmospheric carbon dioxide. One of the key aspects of our investigation is that pteropods and planktonic foraminifera are studied collectively. This allows us to assess the differential impact of ocean acidification on aragonite and calcite.

In our presentation, we illustrate the CT technique and present preliminary results from a downhole investigation of the Pleistocene from Ocean Drilling Program Site 1002 in the Cariaco Basin. In the future the nano-CT scanning method can be used to evaluate the detailed morphological response of calcareous plankton to ocean acidification.