NH43A-3802:
Debris flow hazard assessment by integrated modeling of landslide triggering and propagation: application to the Messina Province, Italy

Thursday, 18 December 2014
Laura maria Stancanelli, David Johnny Peres, Luca Cavallaro, Antonino Cancelliere and Enrico Foti, University of Catania, Catania, Italy
Abstract:
During the last decades an increase of debris flow catastrophic events has been recorded along the Italian territory, mainly due to the increment of settlements and human activities in mountain areas. Considering the large extent of debris flow prone areas, non structural protection strategies should be preferably implemented because of economic constrains associated with structural mitigation measures. In such a framework hazard assessment methodologies play a key role representing useful tools for the development of emergency management policies.

The aim of the present study is to apply an integrated debris flow hazard assessment methodology, where rainfall probabilistic analysis and physically-based landslide triggering and propagation models are combined. In particular, the probabilistic rainfall analysis provides the forcing scenarios of different return periods, which are then used as input to a model based on combination of the USGS TRIGRS and the FLO-2D codes. The TRIGRS model (Baum et al., 2008; 2010), developed for analyzing shallow landslide triggering is based on an analytical solution of linearized forms of the Richards’ infiltration equation and an infinite-slope stability calculation to estimate the timing and locations of slope failures, while the FLO-2D (O'Brien 1986) is a two-dimensional finite difference model that simulates debris flow propagation following a mono-phase approach, based on empirical quadratic rheological relation developed by O'Brien and Julien (1985). Various aspects of the combination of the models are analyzed, giving a particular focus on the possible variations of triggered amounts compatible with a given return period.

The methodology is applied to the case study area of the Messina Province in Italy, which has been recently struck by severe events, as the one of the 1st October 2009 which hit the Giampilieri Village causing 37 fatalities. Results are analyzed to assess the potential hazard that may affect the densely urbanized areas and the transportation infrastructures which are present in this Province, demonstrating the usefulness of the modeling approach.