Geo-Morphological Analyses of the Gakkel Ridge and the Southwest Indian Ridge

Friday, 19 December 2014
Boris Dorschel, Vera S N Schlindwein and Graeme Eagles, Alfred Wegener Institute Helmholtz-Center for Polar and Marine Research Bremerhaven, Bremerhaven, Germany
The Gakkel Ridge in the Arctic Ocean and the Southwest Indian Ridge in the Southwest Indian Ocean between Africa and Antarctica are ultraslow-spreading (<20 mm yr-1) mid ocean ridges. This type of mid ocean ridge has distinct geo-morphologies that are influenced by the slow rate of plate divergence and by mantle potential temperature, which control the processes (peridotite diapirism and intersticial melt migration) by which material rises to fill the space vacated by plate divergence. These ridges are characterised by non-orthogonal spreading. Transform faults, typical of faster spreading mid ocean ridges, are far less common at ultraslow spreading mid ocean ridges. Thus in return, detailed geo-statistical analyses of the geo-morphology of ultraslow-spreading mid ocean ridges can provide valuable information towards a better understanding of these slowest of spreading ridges. We have generated high resolution bathymetric grids for the Gakkel and Southwest Indian ridges based on high resolution multibeam echosounder data from various expeditions with RV Polarstern. On the basis of these grids, geo-statistical analyses allow for an assessment of the geo-morphological elements of the ridges on various scales. The results of these analyses show that, approximately 200 km long medium-scale sections of the ridges can be characterised by the lengths and orientations of the short-scale (hundreds of meters to tens of kilometres) ridges and troughs. The geomorphologies of short-scale ridges and troughs situated at the junctions between medium scale sections often exhibit a mixture of the geomorphological elements seen in the neighbouring sections. These geo-morphological patterns provide insights into the overall spreading-geometry along the Gakkel Ridge and the Southwest Indian Ridge.