Feedbacks Between Bioclogging and Infiltration in Losing River Systems

Wednesday, 17 December 2014
Michelle E Newcomer1, Susan S. Hubbard2, Jan H Fleckenstein3, Christian Schmidt3, Uli Maier3, Martin Thullner3, Craig Ulrich2 and Yoram Rubin1, (1)University of California Berkeley, Berkeley, CA, United States, (2)Lawrence Berkeley National Laboratory, Berkeley, CA, United States, (3)Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
Reduction in riverbed permeability due to biomass growth is a well-recognized yet poorly understood process associated with losing connected and disconnected rivers. Although several studies have focused on riverbed bioclogging processes at the pore-scale, few studies have quantified bioclogging feedback cycles at the scale relevant for water resources management, or at the meander-scale. At this scale, often competing hydrological-biological processes influence biomass dynamics and infiltration. Disconnection begins when declines in the water table form an unsaturated zone beneath the river maximizing seepage. Simultaneously, bioclogging reduces the point-scale infiltration flux and can either limit the nutrient flux and reduce bioclogging, or preferentially focus infiltration elsewhere and enhance bioclogging. These feedbacks are highly dependent on geomorphology and seasonal patterns of discharge and water temperature. To assess the mutual influences of disconnection, biomass growth, and temperature changes on infiltration in a geomorphologically complex river system, we built a 3D numerical model, conditioned on field data, using the reactive-transport simulator MIN3P. Results show that in disconnected regions of the river, biomass growth reduced vertical seepage downward and extended the unsaturated zone length; however these changes were contingent upon disconnection. Mid-way through the seasonal cycle, biomass declined in these same regions due to limited nutrient flux. Seepage and biomass continued to oscillate with a lag correlation of 1 month. Connected regions, however, showed the largest infiltration rates, nutrient fluxes, and concentrations of biomass. Despite the reduction in conductivity from biomass, flow remains high in connected regions because the feedback between bioclogging and infiltration is not as pronounced due to the sharpening hydraulic gradient. Bioclogging ultimately shapes the pattern of flow, however geomorphology dominates the strength of connection. Recognition of the feedbacks between geomorphological patterns and heterogeneous biomass on meander scale hydrological processes can lead to better estimates of local water volumes and capacities, especially when these systems are used as municipal and public water supply sources.