Extension of Characterized Source Model for Broadband Strong Ground Motion Simulations (0.1-50s) of M9 Earthquake

Wednesday, 17 December 2014
Kimiyuki Asano, Disaster Prevention Research Institute, Kyoto University, Kyoto, Japan and Tomotaka Iwata, Disaster Prevention Research Institute, Kyoto University, Uji, Japan
After the 2011 Tohoku earthquake in Japan (Mw9.0), many papers on the source model of this mega subduction earthquake have been published. From our study on the modeling of strong motion waveforms in the period 0.1-10s, four isolated strong motion generation areas (SMGAs) were identified in the area deeper than 25 km (Asano and Iwata, 2012). The locations of these SMGAs were found to correspond to the asperities of M7-class events in 1930's. However, many studies on kinematic rupture modeling using seismic, geodetic and tsunami data revealed that the existence of the large slip area from the trench to the hypocenter (e.g., Fujii et al., 2011; Koketsu et al., 2011; Shao et al., 2011; Suzuki et al., 2011). That is, the excitation of seismic wave is spatially different in long and short period ranges as is already discussed by Lay et al.(2012) and related studies. The Tohoku earthquake raised a new issue we have to solve on the relationship between the strong motion generation and the fault rupture process, and it is an important issue to advance the source modeling for future strong motion prediction.

The previous our source model consists of four SMGAs, and observed ground motions in the period range 0.1-10s are explained well by this source model. We tried to extend our source model to explain the observed ground motions in wider period range with a simple assumption referring to the previous our study and the concept of the characterized source model (Irikura and Miyake, 2001, 2011). We obtained a characterized source model, which have four SMGAs in the deep part, one large slip area in the shallow part and background area with low slip. The seismic moment of this source model is equivalent to Mw9.0. The strong ground motions are simulated by the empirical Green’s function method (Irikura, 1986). Though the longest period limit is restricted by the SN ratio of the EGF event (Mw~6.0) records, this new source model succeeded to reproduce the observed waveforms and Fourier amplitude spectra in the period range 0.1-50s. The location of this large slip area seems to overlap the source regions of historical events in 1793 and 1897 off Sanriku area. We think the source model for strong motion prediction of Mw9 event could be constructed by the combination of hierarchical multiple asperities or source patches related to histrorical events in this region.