H33F-0887:
Analysis of Satellite Retreived Active-Passive Merged Soil Moisture Distribution: A Case Study Over India.
Wednesday, 17 December 2014
Aniket Chakravorty1, Bhagu Ram Chahar1, Om P Sharma2 and Dhanya C.T1, (1)Indian Institute of Technology Delhi, Civil Engineering, New Delhi, India, (2)Indian Institute of Technology Delhi, Center for Atmospheric Sciences, New Delhi, India
Abstract:
Soil moisture is the source of water for evapotranspiration over the continents and it participates in both energy and water balance of the earth. Soil moisture participates in the energy cycle by managing the partitioning of the energy budget into latent and sensible heat, there by influencing the hydrological cycle. But to better understand the influence of soil moisture on the hydrological cycle, large scale monitoring is required. The objective of this study is to qualitatively analyze the active-passive merged soil moisture distribution, prepared under the ESA_CCI programme, against two AMSR-E soil moisture distributions, AMSR-E/NSIDC (National Snow and Ice Data Center) and AMSR-E/VUA(Virje Universiet Amstradam) and GLDAS_NOAH model simulations. The ESA_CCI soil moisture distribution is also compared with the GPCC monthly precipitation distribution to observe the representativeness of the precipitation seasonality in the satellite retrieved soil moisture. India has been selected as the study area, esp. the Central Indian region, as it has shown to be a soil moisture hot-spot for land-surface atmosphere interaction. The preliminary study show that both ESA_CCI and AMSR-E/VUA soil moisture distributions capture similar seasonal patterns in addition to processes like rainfall events and inter-annual variations. In addition to this it was also observed that the soil moisture distribution of ESA_CCI and AMSR-E/VUA are linearly related to each other for more than 50% of the land points. In case of ESA_CCI and AMSR-E/NSIDC, the soil moisture distributions are able to capture similar seasonal patterns but not the random events and they also do not show a strong linear relationship. We also analyze the effect of topography and vegetation distribution on the error charactristics of the satellite retrieved soil moisture distributions.