Seismic Investigation of the Pointer Ridge offshore southwestern Taiwan: Detection of fluid migration pathways and fault seal analysis

Tuesday, 16 December 2014
Wei-Chung Han1, Char-Shine Liu1, Che-Chuan Lin1 and Yunshuen Wang2, (1)NTU National Taiwan University, Taipei, Taiwan, (2)Central Geological Survey, Taipei, Taiwan
This study analyzes both 2D and 3D seismic images in the Pointer Ridge area for gas hydrate investigation. Pointer Ridge is a ridge situated on the passive China continental margin formed by down slope erosion of the continental slope material on either side of the ridge. High methane flux rate and several seismic chimneys were observed in this area from previous studies, which may imply active ongoing fluid migration processes. To find the possible fluid migration pathways and understand the fluid migration processes, we firstly use both 2D and 3D seismic images to map the spatial distribution of the BSRs, and to identify the structural and sedimentary features in our study area. Secondly, seismic attribute analyses are carried out for fluid migration pathways detection and fault seal analysis. Finally, we propose a conceptual model to illustrate how fluids migrate along those pathways to the seafloor. The results show that the fluid migration pathways obtained from seismic attribute analysis results correlate well with the chimney and fault structures recognized from conventional seismic amplitude sections. We suggest that high angle normal faults may play an important role for fluid migrating upward, and the ongoing fluid migration processes will increase the seafloor instabilities. Since the Pointer Ridge is a gas hydrate leaking site, our results could provide useful information for further risk evaluation.