The effects of possibly buoyant flat slab segments on Nazca and South American plate motions

Tuesday, 16 December 2014
Rhys Shea, Carolina R Lithgow-Bertelloni and Fabio Crameri, University College London, London, United Kingdom
Flat slabs are ubiquitous today and in Earth's past, present in at least 10% of present-day subduction zones. The Nazca slab is a classic example with large dip variations along strike, including two prominent flat segments in Peru and Argentina that coincide with the subduction of aseismic ridges. The origin of flat segments remain enigmatic though much work has examined the consequences for upper plate deformation and continued subduction. In the case of the Argentinian flat segment, detailed seismic imaging has shown significantly increased crustal thickness in the flat part of the slab. Our present understanding of oceanic crust formation suggests that incrased crustal thickness forms in response to larger degrees of partial melt, which in turn decrease the water content of the formed crust. The residuum from this process is depleted. The resulting combined lithospheric column is buoyant with respect to the underlying mantle, and likely cold from its contact with the overlying plate and unlikely to undergo the basalt-eclogite transition due to kinetic hindrances. This has consequences for mantle flow and the shear stresses it exerts at the base of the lithosphere and hence to plate motions. Interestingly, the motion of the Nazca-South America pair is difficult to reproduce even in the most sophisticated models (Stadler et al. 2010) without invoking special coupling, rheology or forces. We examine the effects of the subduction of neutral and buoyant flat segments on mantle flow and plate motions, globally and locally for Nazca and South America. We construct high-resolution models of the morphology and density structure of the Nazca slab and embed them in an existing global slab model. We compute the global viscous flow induced and predict plate motions consistent with the density heterogeneity and plate geometry. As an end member we also examine a Nazca slab that dips uniformly with a 30 degree dip. We find, perhaps unsurprisingly, that the most important factor in matching plate velocities today is not the density structure of the slab but its geometry. A slab that dips at 30 degrees reproduces the Nazca plate motions almost exactly, with minor improvements when the real morphology is added. The lower mantle buoyancy remains important for the South American motions. Changes in plate or plate boundary rheology are not needed.