H23E-0917:
Reactive Transport Modeling of Subsurface Arsenic Removal Systems in Rural Bangladesh

Tuesday, 16 December 2014
Mohammad Moshiur Rahman, Delft University of Technology, Delft, 5612, Netherlands, Boris Maurijn van Breukelen, Free University of Amsterdam, Amsterdam, Netherlands, Mark Bakker, Delft University of Technology, Delft, Netherlands and Kazi Matin Ahmed, Dhaka University, Dhaka, Bangladesh
Abstract:
Elevated concentrations of arsenic (As) in the groundwater of the shallow aquifers of Bangladesh are a major public health concern. Subsurface Arsenic Removal (SAR) is a relatively new treatment option that can potentially be a cost effective method for arsenic removal for community-based drinking water supplies. The basic idea of SAR is to extract water, aerate it, and re-inject it, after which groundwater with reduced arsenic concentrations may be extracted. The main process for As reduction is sorption to Hydrous Ferric Oxides (HFO) that forms after injection of the aerated water. The purpose of this poster is to investigate the major geochemical processes responsible for the (im)mobilization of As during SAR operation.

SAR was applied at a test site in Muradnagar upazila in Comilla district about 100 km southeast of Dhaka in Bangladesh. Multiple extraction/aeration/re-injection cycles were performed and water samples were analyzed. A PHREEQC reactive transport model (RTM) was used in a radial flow setting to try to reproduce the measurements. Kinetic oxidation/dissolution reactions, cation exchange, and surface complexation were simulated. The simulation of different reactions enables the possibility to discern the reaction parameters involved in the im(mobilization) of As.

The model fit has reasonable agreement with the observed data for major ions and trace elements. The model suggests an increasing sorption capacity due to the gradual development of HFO precipitates resulting from the injection phases. Modeled breakthrough curves of As, Fe(II), and Mn, match the measured increase of As, Fe(II), and Mn removal with successive cycles. The model illustrates that the pH of groundwater during SAR operation has a great impact on As sorption in the subsurface. The surface complexation modeling suggests that competitive displacement of As by H4SiO4 is an important factor limiting As removal during SAR operation.