Initial Test Determination of Cosmogenic Nuclides in Magnetite

Friday, 19 December 2014
Hiroshi Matsumura, High Energy Accelerator Research Organization, Radiation Science Center, Tsukuba, Ibaraki, Japan, Marc W Caffee, Purdue University, West Lafayette, IN, United States, Keisuke Nagao, University of Tokyo, Geochemical Research Center, Bunkyo-ku, Tokyo, Japan and Kunihiko Nishiizumi, Univ California Berkeley, Berkeley, CA, United States
Long-lived radionuclides, such as 10Be, 26Al, and 36Cl, are produced by cosmic rays in surficial materials on Earth, and used for determinations of cosmic-ray exposure ages and erosion rates. Quartz and limestone are routinely used as the target minerals for these geomorphological studies. Magnetite also contains target elements that produce abundant cosmogenic nuclides when exposed to the cosmic rays.

Magnetite has several notable merits that enable the measurement of cosmogenic nuclides: (1) the target elements for production of cosmogenic nuclides in magnetite comprise the dominant mineral form of magnetite, Fe3O4; (2) magnetite can be easily isolated, using a magnet, after rock milling; (3) multiple cosmogenic nuclides are produced by exposure of magnetite to cosmic-ray secondaries; and (4) cosmogenic nuclides produced in the rock containing the magnetite, but not within the magnetite itself, can be separated using nitric acid and sodium hydroxide leaches.

As part of this initial study, magnetite was separated from a basaltic sample collected from the Atacama Desert in Chili (2,995 m). Then Be, Al, Cl, Ca, and Mn were separated from ~2 g of the purified magnetite. We measured cosmogenic 10Be, 26Al, and 36Cl concentrations in the magnetite by accelerator mass spectrometry at PRIME Lab, Purdue University. Cosmogenic 3He and 21Ne concentrations of aliquot of the magnetite were measured by mass spectrometry at the University of Tokyo. We also measured the nuclide concentrations from magnetite collected from a mine at Ishpeming, Michigan as a blank. The 10Be and 36Cl concentrations as well as 3He concentration produce concordant cosmic ray exposure ages of ~0.4 Myr for the Atacama basalt. However, observed high 26Al and 21Ne concentrations attribute to those nuclides incorporation from silicate impurity.