A performance geodynamo benchmark

Wednesday, 17 December 2014
Hiroaki Matsui and Eric M Heien, University of California Davis, Davis, CA, United States
In the last ten years, a number of numerical dynamo models have successfully represented basic characteristics of the geomagnetic field.
However, to approach the parameters regime of the Earth's outer core, we need massively parallel computational environment for extremely large spatial resolutions. Local methods are expected to be more suitable for massively parallel computation because the local methods needs less data communication than the spherical harmonics expansion, but only a few groups have reported results of the dynamo benchmark using local methods (Harder and Hansen, 2005; Matsui and Okuda, 2005; Chan et al., 2007) because of the difficulty treating magnetic boundary conditions based on the local methods. On the other hand, some numerical dynamo models using spherical harmonics expansion has performed successfully with thousands of processes. We perform benchmark tests to asses various numerical methods to asses the next generation of geodynamo simulations.

The purpose of the present benchmark test is to assess numerical geodynamo models on a massively parallel computational platform. To compare among many numerical methods as possible, we consider the model with the insulated magnetic boundary by Christensen et al. (2001) and with the pseudo vacuum magnetic boundary, because the pseudo vacuum boundaries are implemented easier by using the local method than the magnetic insulated boundaries. In the present study, we consider two kinds of benchmarks, so-called accuracy benchmark and performance benchmark.

In the present study, we will report the results of the performance benchmark. We perform the participated dynamo models under the same computational environment (XSEDE TACC Stampede), and investigate computational performance. To simplify the problem, we choose the same model and parameter regime as the accuracy benchmark test, but perform the simulations with much finer spatial resolutions as possible to investigate computational capability (e.g. parallel scalability and capability, maximum spatial resolutions)
under the closer condition to the Earth's outer core. We compare the results of the performance benchmark tests by various codes and discuss characteristics of the simulation methods for geodynamo problems.