T53B-4686:
Internal time marker (Q1) of the Cretaceous super chron in the Bay of Bengal - a new age constraint for the oceanic crust evolved between India and Elan Bank

Friday, 19 December 2014
Kolluru Sree Krishna1, Mohammad Ismaiel1, Srinivas Karlapati1, Dipendu Saha2 and Jitendriya Mishra2, (1)National Institute of Oceanography, Panjim, India, (2)KDM Institute of Petroleum Exploration, BR Group, Dehradun, India
Abstract:
Analysis of marine magnetic data of the Bay of Bengal (BOB) led to suggest two different tectonic models for the evolution of lithosphere between India and East Antarctica. The first model explains the presence of M-series (M11 to M0) magnetic anomalies in BOB with a small room leaving for accommodating the crust evolved during the long Cretaceous Magnetic Quiet Period. Second model explains in other way that most part of the crust in BOB was evolved during the quite period together with the possible presence of oldest magnetic chron M1/ M0 in close vicinity of ECMI. It is with this perspective we have reinvestigated the existing and recently acquired magnetic data together with regional magnetic model of BOB for identification of new tectonic constraints, thereby to better understand the evolution of lithosphere. Analysis of magnetic data revealed the presence of spreading anomalies C33 and C34 in the vicinity of 8°N, and internal time marker (Q1) corresponding to the age 92 Ma at 12°N in a corridor between 85°E and Ninetyeast ridges. The new time marker and its location, indeed, become a point of reference and benchmark in BOB for estimating the age of oceanic crust towards ECMI. The magnetic model further reveals the presence of network of fracture zones (FZs) with different orientations. Between 85°E and Ninetyeast ridges, two near N-S FZs, approximately followed 87°E and 89.5°E are found to extend into BOB up to 12°N, from there the FZs reorient in N60°W direction and reach to the continental margin region. Along ECMI two sets of FZs are identified with a northern set oriented in N60°W and southern one in N40°W direction. This suggests that both north and south segments of the ECMI were evolved in two different tectonic settings. The bend in FZs marks the timing (92 Ma) of occurrence of first major plate reorganisation of the Indian Ocean and becomes a very critical constraint for understanding the plate tectonic process in early opening of the Indian Ocean.