Study on 3D surfactant assisted electrokinetic remediation of 1,2,4-trichlorobenzene in low permeability soil

Friday, 19 December 2014
Wenjing Qiao, Shujun Ye and Jichun Wu, Nanjing University, Nanjing, China
Electrickinetic(EK) is a promising remediation technology because of its capability to remediate soils with low permeability. It has been used for heavy metals and organic pollutant(OPs) contaminated soils. As the most OPs are poor solubility and strong sorption capacity, combined EK technology is usually used, for example, EK combined with surfactants. Numerous combined EK tests are done in one-dimension(1D) column, however, it is proved that there is a big gap between 1D tests and field application. The objectives of this study are to investigate the remediation efficiency and EK behavior of 1,2,4-trichlorobenzene(1,2,4-TCB) contaminated clay enhanced by surfactants in a three-dimension reactor with 28cm length×15cm width×16cm height. 1,2,4-TCB was one of the main contaminants at a field site in Nanjing, China, where the polluted soils are clay. Soil filled in EK cell was divided into six layers in depth, and each layer was divided into six parts in length and three parts in width. There were 108 specimens in total which realized 3D monitoring the effects of EK. Triton X-100(Exp1) and Tween80(Exp2) dissolved in NaCO3/NaHCO3 buffer respectively, were used as the anode purging solution. The distributions of soil pH and water content showed that the buffer was sufficient to neutralize H+ produced at anode and the direction of electroosmotic flow(EOF) remained constant. Exp2 generated a higher EOF than Exp1, but remediation efficiencies were not satisfactory so far. The concentration of 1,2,4-TCB in soil reached a peak and nadir in the normalized distances of 0.75 and 0.9 from cathode after 5 days, respectively. The 1,2,4-TCB concentration in the peak was almost twice as much as the initial concentration. It suggested that 1,2,4-TCB was desorbed from soil by surfactants and was transported from anode to cathode by EOF, which proved the capability of EK with surfactants to move 1,2,4-TCB in clay. The concentration of 1,2,4-TCB in the normalized distances of 0.01~0.06 from cathode were almost unchanged in different depths, suggesting that EK with surfactants had little effect on those regions. A follow-up study will try to improve the remediation efficiency, for example, increasing test duration, optimizing test conditions, enhancing solubility and mobility of 1,2,4-TCB and better controlling soil pH and current.