Remote Imaging of Earthquake Characteristics Along Oceanic Transforms

Thursday, 18 December 2014
Charles J Ammon, Pennsylvania State University Main Campus, Department of Geosciences, University Park, PA, United States and Michael Cleveland, Los Alamos National Laboratory, Los Alamos, NM, United States
Compared with subduction and continental transform systems, many characteristics of oceanic transform faults (OTF) are better defined (first-order structure and composition, thermal properties, etc.). Still, many aspects of earthquake behavior along OTFs remain poorly understood as a result of their relative remoteness. But the substantial aseismic deformation (averaging roughly 85%) that occurs along OTFs and the implied interaction of aseismic with seismic deformation is an opportunity to explore fundamental earthquake nucleation and rupture processes. However, the study of OTF earthquake properties is not easy because these faults are often located in remote regions, lacking nearby seismic networks. Thus, many standard network-based seismic approaches are infeasible, but some can be adapted to the effort. For example, double-difference methods applied to cross-correlation measured Rayleigh wave time shifts is an effective tool to provide greatly improved relative epicentroid locations, origin-time shifts, and relative event magnitudes for earthquakes in remote regions. The same comparative waveform measurements can provide insight into rupture directivity of the larger OTF events. In this study, we calculate improved relative earthquake locations and magnitudes of earthquakes along the Blanco Fracture Zone in the northeast Pacific Ocean and compare and contrast that work with a study of the more remote Menard Transform Fault (MTF), located in the southeast Pacific Ocean. For the Blanco, we work exclusively with Rayleigh (R1) observations exploiting the dense networks in the northern hemisphere. For the MTF, we combine R1 with Love (G1) observations to map and to analyze the distribution of strong asperities along this remote, 200-km-long fault. Specifically, we attempt to better define the relationship between observed near-transform normal and vertical strike-slip earthquakes in the vicinity of the MTF. We test our ability to use distant observations (the closest station is about 2,500 km distant) to constrain rupture characteristics of recent strong earthquakes in the region. We compare the seismicity characteristics along the faults to explore the relationship of fault age and morphology on rupture behavior.