Iron Isotope Systematics of the Bushveld Complex, South Africa: Initial Results

Friday, 19 December 2014
Niklas Stausberg1, Charles E Lesher1,2, Gry Hoffmann-Barfod1,2, Justin J Glessner2 and Christian Tegner1, (1)Aarhus University, Department of Geoscience, Aarhus, Denmark, (2)University of California Davis, Department of Earth & Planetary Sciences, Davis, CA, United States
Iron isotopes show systematic changes in igneous rocks that have been ascribed to fractional crystallization, partial melting, as well as, diffusion effects. Layered mafic intrusions, such as the Paleoproterozoic Bushveld Igneous Complex, are ideally suited to investigate stable isotope fractionation arising principally by fractional crystallization. The upper 2.1km of the Bushveld Complex (Upper and Upper Main Zone, UUMZ) crystallized from a basaltic magma produced by a major recharge event, building up a sequence of tholeiitic, Fe-rich, gabbroic cumulate rocks that display systematic variations in mineralogy and mineral compositions consistent with fractional crystallization. Within this sequence, magnetite joins the liquidus assemblage at ∼260m, followed by olivine at 460m and apatite at 1000m. Here, we present iron isotope measurements of bulk cumulate rocks from the Bierkraal drill core of UUMZ of the western limb. Iron was chemically separated from its matrix and analyzed for δ56Fe (relative to IRMM- 014) with a Nu plasma MC-ICPMS at the University of California, Davis, using (pseudo-) high resolution and sample-standard bracketing. The δ56Fe values for Bushveld cumulates span a range from 0.04‰ to 0.36‰, and systematically correlate with the relative abundance of pyroxene + olivine, magnetite and plagioclase. Notably, the highest δ56Fe values are found in plagioclase-rich cumulates that formed prior to magnetite crystallization. δ56Fe is also high in magnetite-rich cumulates at the onset of magnetite crystallization, while subsequent cumulates exhibit lower and variable δ56Fe principally reflecting fractionation of and modal variations in magnetite, pyroxene and fayalitic olivine. The overall relationships for δ56Fe are consistent with positive mineral – liquid Fe isotope fractionation factors for magnetite and plagioclase, and negative to near zero values for pyroxene and olivine. These initial results are being integrated into a forward model of the Bushveld liquid line of descent and will be compared to complementary work on the Skaergaard intrusion.