The Long-Standing Dynamical Impacts of Climate Engineering following the Injection of Stratospheric Sulphate Aerosol

Monday, 15 December 2014
Scott M Osprey1, Lesley J Gray2, Jim Haywood3 and Andy Jones3, (1)University of Oxford, Oxford, United Kingdom, (2)Oxford University, Oxford, United Kingdom, (3)Met Office Hadley center for Climate Change, Exeter, United Kingdom
Discussions of our response to climate change invariably involve issues of adaptation and mitigation. The former presupposes unavoidable climate consequences and recognises a need to lessen their impact. The latter attempts to lessen the effects of increasing greenhouse gases (GHG) by (1) reducing GHG emission, (2) creating CO2 sinks (e.g. carbon sequestration) or by blocking the effects of solar radiation (solar radiation management - SRM).

The SPICE project was set up to investigate the feasibility of implementing a practical method of SRM using the stratospheric injection of aerosols. SPICE remit includes: engineering design for the delivery of stratospheric aerosol, laboratory measurements for characterising the properties of optimal aerosol, and modelling studies looking into the parameterisation and impact of stratospheric aerosols within a state-of-the-art global climate model. The project has also pressed for the need for governance of climate engineering research.

We describe idealised experiments investigating the environmental impact following sulphate aerosol injection into the tropical low-mid stratosphere. We compare a geo-engineering scenario (GeoMIP G4), which includes a constant injection rate of SO2 (5Tg/year) beginning at 2020, against a control simulation of increasing greenhouse gas forcing, as outlined by the CMIP5 RCP4.5 scenario. We use the well-documented stratosphere-resolving Hadley Centre model, which has been employed in previous CMIP5 and climate engineering studies. We examine for high-latitude impacts following tropical aerosol injection, and in particular the Holton-Tan effect observed in the wintertime extratropical stratosphere. These dynamical sensitivities provide an important link, bridging tropical stratosphere forcing with the near-surface response often seen at high latitudes.