C13B-0460:
Regional scale climatic trends derived from Younger Dryas glaciers in the U.K.

Monday, 15 December 2014
Danni Pearce1,2, Brice R Rea2, Iestyn Barr3, David Small4 and Des McDougall5, (1)University of Worcester, Worcester, WR2, United Kingdom, (2)University of Aberdeen, School of Geosciences, Aberdeen, United Kingdom, (3)Queen University Belfast, Belfast, United Kingdom, (4)University of Glasgow, Glasgow, United Kingdom, (5)University of Worcester, Worcester, United Kingdom
Abstract:
In the U.K., the glacial geomorphological record has been utilised to infer paleo-glacier geometries and ice dynamics, with much of this work focussing on the Scottish Highlands during the Younger Dryas (YD; c. 12.9 – 11.7 ka BP). During the YD the West Highlands Ice-cap covered the majority of the Scottish Highlands (c. 13,000 sq mi), which is thought to have affected accumulation rates beyond the ice-cap margins, resulting in a steep (c. 80%) easterly decline in precipitation and smaller ice-masses.

We present multi-proxy data investigating YD glaciation in the Tweedsmuir Hills, Southern Uplands, Scotland (55°46’ N, 03°34’ W), suggesting conditions were less arid. The area forms the most easterly upland region in the Southern Uplands and south of the West Highlands Ice-cap, reaching an altitude of 840 m and covering c. 200 sq mi. Results of air-photo interpretation and field mapping, which utilised a morphostratigraphic approach, have demonstrated a more extensive glaciation than previously mapped. The reconstruction consists of two separate icefields covering an area c. 40 sq mi. and new 14C dates of basal contact organics place the ice-mass within the context of the YD but new Cosmogenic Nuclide Analysis (CNA) of bedrock and in situ boulders are inconclusive, implying limited erosion and limited resetting during the YD.

Equilibrium Line Altitudes are calculated to have ranged from c. 419 - 634 m. Paleo-precipitation values were derived using two precipitation-temperature relationships and suggest slightly lower totals than YD ice-masses located on the west coast of the U.K. but do not support a significant easterly reduction in precipitation. Analysis of present-day (c. 30 year) meteorological data across the U.K. demonstrates a pronounced reduction in precipitation of c. 50% on the east coast. This disparity between present-day and glacier-based YD precipitation patterns is partly attributable to the methodology employed in glacier reconstruction and represents an avenue for future research. These results differ significantly from the traditional paradigm which due to low accumulation rates, only restricted ice-masses developed in the Tweedsmuir Hills. Within a wider context this data questions the steep precipitation gradients thought to have been present during the YD.