The HumanIndexMod and New Calculations Demonstrating Heat Stress Effects All Aspects of Human Life Through Industry, Agriculture, and Daily Life.

Friday, 19 December 2014
Jonathan R Buzan and Matthew Huber, University of New Hampshire Main Campus, Durham, NH, United States
We show the new climatic tool, HumanIndexMod (HIM), for quantitatively assessing key climatic variables that are critical for decision making. The HIM calculates 9 different heat stress and 4 moist thermodynamic quantities using meteorological inputs of T, P, and Q. These heat stress metrics are commonly used throughout the world. We show new methods for integrating and standardizing practices for applying these metrics with the latest Earth system models. We implemented the HIM into CLM4.5, a component of CESM, maintained by NCAR. These heat stress metrics cover philosophical approaches of comfort, physiology, and empirically based algorithms. The metrics are directly connected to the Urban, Canopy, Bare Ground, and Lake modules, to differentiate distinct regimes within each grid cell. The module calculates the instantaneous moisture-temperature covariance at every model time step and in every land surface type, capturing all aspects of non-linearity. The HIM uses the most accurate and computationally efficient moist thermodynamic algorithms available. Additionally, we show ways that the HIM may be effectively integrated into climate modeling and observations. The module is flexible. The user may decide which metrics to call, and there is an offline version of the HIM that is available to be used with weather and climate datasets. Examples include using high temporal resolution CMIP5 archive data, local weather station data, and weather and forecasting models. 

To provide comprehensive standards for applying the HIM to climate data, we executed a CLM4.5 simulation using the RCP8.5 boundary conditions. Preliminary results show moist thermodynamic and heat stress quantities have smaller variability in the extremes as compared to extremes in T (both at the 95th percentile). Additionally, the magnitude of the moist thermodynamic changes over land is similar to sea surface temperature changes. The metric changes from the early part of the 21st century as compared to the end of the 21st century show that many portions of the world switch from moderate levels of heat stress for the top 2 weeks of a year to severe heat stress for the top 2 weeks of a year. These changes are reflected in livestock (THI); evaporative cooling (SWMP80) and air-conditioning; and industrial, military, and athletic heat stress (sWBGT, DI, HI, etc.).