SA21A-4044:
The High-latitude Electric Potential Disparity and Hemispheric Differences in the Upper Thermospheric Neutral Wind Circulation

Tuesday, 16 December 2014
Matthias Foerster, Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, Potsdam, Germany, Stein Haaland, University of Bergen, Bergen, Norway and Ingrid Cnossen, NERC British Antarctic Survey, Cambridge, CB3, United Kingdom
Abstract:
We present statistical studies of both the high-latitude ionospheric potential pattern deduced from long-term observations of the Cluster Electron Drift Instrument (EDI) and upper thermospheric neutral wind circulation patterns in the Northern (NH) and Southern Hemisphere (SH) obtained from accelerometers on board of low-Earth orbiting satellites like CHAMP during about the same time interval. The cross-polar cap potential difference during southward IMF conditions appears to be on average slightly (~7%) larger in the SH compared with the NH, while the neutral wind magnitude and vorticity amplitude are mostly larger in the NH than in the SH, especially during high solar activity conditions. We attribute such behaviour to peculiarities of the hemispheres due to the non-dipolar portions of Earth's main magnetic field that constitute substantial differences between the geomagnetic field configurations of both hemispheres. They cause in particular different magnetic field flux densities in the opposite polar regions and different offsets of the invariant poles with respect to the rotation axis of the Earth. The pole is presently displaced almost twice the distance in the SH compared to the NH, which has substantial implications for the coupled magnetosphere-ionosphere-thermosphere system under the influence of external drivers. To analyse this behaviour, we have run several numerical simulations using the first-principle Coupled Magnetosphere-Ionosphere-Thermosphere (CMIT) model under various seasonal conditions. The survey of both the numerical simulation results and the observations confirm prominent asymmetries between the two hemispheres for these parameters.