Quantification of the Bioturbation Activity of Lumbriculus Variegatus Worms Using Fluorescent Particulate Tracers

Wednesday, 17 December 2014
Liliana Maria Hernandez-Gonzalez1, Kevin R Roche2, Minwei Xie2 and Aaron Ian Packman2, (1)University of Puerto Rico Mayaguez, Mayaguez, PR, United States, (2)Northwestern University, Evanston, IL, United States
Important biological, physical and chemical processes, such as fluxes of oxygen, nutrients and contaminants, occur across sediment-water interfaces. These processes are influenced by bioturbation activities of benthic animals. Bioturbation is thought to be significant in releasing metals to the water column from contaminated sediments, but metals contamination also affects organism activity. Consequently, the aim of this study was to consider the interactions of biological activity, sediment chemistry, pore water transport, and chemical reactions in sediment mixing and the flux and toxicity of metals in sediments. Prior studies have modeled bioturbation as a diffusive process. However, diffusion models often do not describe accurately sediment mixing due to bioturbation. To this end, we used the continuous time random walk (CTRW) model to assess sediment mixing caused by bioturbation activity of Lumbriculus variegatus worms. We performed experiments using fine-grained sediments with different levels of zinc contamination from Lake DePue, which is a Superfund Site in Illinois. The tests were conducted in an aerated fresh water chamber. Fluorescent particulate tracers were added to the sediment surface to quantify mixing processes and the influence of metals contaminants on L. variegatus bioturbation activity. We observed sediment mixing and organism activity by time-lapse photography over 14 days. Then, we analyzed the images to characterize the fluorescent particle concentration as a function of sediment depth and time. Results reveal that sediment mixing caused by L. variegatus is subdiffusive in time and superdiffusive in space. These results suggest that anomalous sediment mixing is probably a ubiquitous process, as this behavior has only been observed previously in marine sediments. Also, the experiments indicate that bioturbation and sediment mixing decreased in the presence of higher metals concentrations in sediments. This process is expected to decrease efflux of metals from highly contaminated sediments by reducing biological activity.