EP31C-3572:
Modeling wave effects on limits of woody vegetation in Catahoula Lake, LA, USA

Wednesday, 17 December 2014
Brandon L Edwards1, Milan Curcic2 and Richard Keim1, (1)Louisiana State University, Baton Rouge, LA, United States, (2)University of Miami, Miami, FL, United States
Abstract:
Exposure to water waves in lakes is an important control on the structure and distribution of both submerged and shoreline vegetative communities. Wave exposure incident on the shoreline limits the distribution of shrubs on both lake and coastal margins by preventing establishment of seedlings via bed disturbance and uprooting. The goal of this study is to investigate the relationship between bed stress due to wave action and the spatial distribution of woody seedling establishment in Catahoula Lake, Louisiana, USA. The lake bed consists of a broad, seasonally inundated flat bordered by a band of woody shrubs. Annual summer de-watering of the lake allows the lake bed to support a moist-soil herbaceous vegetation community, but recent encroachment by woody shrubs over the past ~70 years threatens ecosystem conversion. We use the University of Miami Wave Model (UMWM) to simulate surface wave evolution and bed shear stress for a range of dominant wind conditions and water levels. UMWM is a 3rdgeneration ocean wave model that solves the wave energy balance equation given wind forcing input. While the model has been previously validated in deep water and coastal ocean applications, this study validates the model in very shallow water where bed-induced wave dissipation is a significant process. Model results show that waves of sufficient energy to prevent establishment or to uproot seedlings are common in areas of the lake that are experiencing the least woody encroachment. Areas of the lake bed that are experiencing encroachment are often sheltered from the strongest waves due to the lakes orientation with respect to dominant winds and prior establishment of woody growth, which dissipates wave energy significantly. Results are consistent with some otherwise-unexplained conditions at the lake such as spatially inconsistent relationships between elevation and vegetation communities. We use model results to investigate feedbacks between woody encoachment (both new and established growth) and dominant climatic forcing and resulting wave action and to identify critical bed shear stress thresholds for seedling establishment.