Downhole monitoring of biogenic gas production at the Maguelone shallow injection experimental site (Languedoc coastline, France).

Wednesday, 17 December 2014
Halidi Abdelghafour, Florent Brondolo, Nataliya Denchik and Philippe A. Pezard, Géosciences Montpellier, Montpellier Cedex 05, France
The controllability of CO2 geological storage can ensure the integrity of storage operations, requiring a precise monitoring of reservoir fluids and properties during injection and over time. In this context, deep saline aquifers offer a large capacity of storing CO2, but the accessibility to long term behavior studies remains limited until now. The Maguelone shallow experimental site located near Montpellier (Languedoc, France) provides such an opportunity for the understanding and accuracy of hydrogeophysical monitoring methods. The geology, petrophysic and hydrology of this site have been studied in details in previous studies, revealing the presence of a thin saline aquifer at 13-16 m depth surrounded by clay-rich materials. The site as a whole provides a natural laboratory to study CO2 injection at field scale, shallow depth, hence reasonable costs. The monitoring setup is composed of a series of hydrogeophysical and geochemical methods offering measurements of fluid pore pressure, electrical resistivity, acoustic velocities as well as pH and fluid properties and chemistry.

To assess the response of the reservoir during CO2 injection, all measurements need to be compared to a representative baseline. Long after a series of gas injection experiments at Maguelone, fluctuations overtime of reservoir fluids and properties (such as pore fluid pH) were discovered at steady state, demonstrating the natural variability of the site in terms of biogenic gas (H2S, CH4, CO2) production and transfer.

For this, a new resistivity baseline had to be constructed for all observatories. From this, the downhole gas saturation was determined versus depth and time from time-lapse resistivity logs analysed on the basis of other logs and laboratory measurements. The Waxman and Smits model (1968) for electrical properties of sand-clay formations was modified to estimate the gas saturation in 4D, to account for surface conductivity and pore connectivity. High frequency logging and monitoring of electrical properties both, with several measurements per hour and a dm-scale resolution, provide and insight into subsurface dynamics in terms of gas flow and storage, with biogenic gas saturations ranging from 0.1 to 5.0 %. This natural contribution has to be taken into account for upcoming experiments.