A53M-3396:
Projecting Future Changes in Seasonal Vegetative Exposure to Ozone in the Western US Using GEOS-Chem Adjoint

Friday, 19 December 2014
Kateryna Lapina, Daven K Henze and Jana B Milford, University of Colorado at Boulder, Boulder, CO, United States
Abstract:
Frequent exposure to elevated levels of ozone leads to negative impacts on ecosystems including the loss of ozone-sensitive tree species and agricultural crops in many regions of the United States. Information on emission sources contributing to these losses is crucial for developing a successful strategy to mitigate the negative effects of ozone on vegetation. A cumulative ozone exposure metric, W126, has been considered by the US EPA for use as secondary ozone standard. The rural West of the US has been demonstrated to have an especially great potential for disconnect between attaining primary versus W126-based ozone standards. In this work we separate the relative impact of emissions sources for the W126 in the Western US using forward and adjoint simulations with the global chemical transport model GEOS-Chem. The obtained source contributions are separated by different locations, species, and sectors and are combined with representative concentration pathway (RCP) anthropogenic emission scenarios to project future changes in W126 through 2050. Focusing on the foreign influences we find that the change in Chinese emissions alone is projected to lead to up to 20% increase in the W126 levels in the West and is strongly dependent on the RCP scenario. We further use concentration-response functions based on the W126 index to estimate the loss of four ozone-sensitive species in the West – ponderosa pine, Douglas Fir, red alder and quacking aspen.