T31A-4570:
Progressive evolution of microfabrics in high-temperature indentation creep experiments

Wednesday, 17 December 2014
Sara Wassmann, Dorothee Dorner and Bernhard Stoeckhert, Ruhr University Bochum, Bochum, Germany
Abstract:
Microfabrics of natural rocks as well as of those deformed in laboratory experiments are studied post-mortem, the history of fabric evolution being inferred from a finite state. This is a major drawback when being interested in modification of fabrics related to progressive deformation. Here we present a novel approach to analyze and compare fabrics in different stages of evolution, taking spatial position to mimic a time series. Using this approach, evolution in time can be investigated on one sample deformed in a single indentation creep test. Such experiments at high temperatures and atmospheric pressure provide information on mechanical properties of rock-forming minerals as well as on microfabrics developed during inhomogeneous deformation underneath the indenter. Using a conventional creep apparatus, a cylindrical alumina indenter, 2 mm in diameter, is driven by a dead load into the flat surface of a specimen. A penetration depth of 1 mm is typically reached after hours to days, depending on material, applied temperature, and load. Previous experiments on natural, polycrystalline anhydrite carried out at temperatures between 700°C and 920 °C yield a stress exponent of 3.9 indicating deformation in the dislocation creep regime, consistent with microstructural observations (Dorner et al., 2014; Solid Earth). Within a cone-shaped region in front of the indenter, the original microfabric appears entirely unaffected. The neutral cone is mantled by highly deformed shear zones. During progressive indentation this structure of undeformed cone and shear zones propagates into the specimen. Thus, for a homogeneous starting material, serial sections of the deformed specimen normal to the indenter axis provide insight into fabrics in distinct stages of evolution. Microfabrics developed at different distance in front of the approaching indenter can be taken to represent a time series. A disadvantage of the technique is that the history of shear zone deformation is complex, comprising components of tangential stretching and simple shear, which complicates the interpretation of fabrics and crystallographic preferred orientations. Notwithstanding, indentation creep tests seem to be a sound experimental approach to study microstructural evolution in time using a single experimentally deformed sample.