Magnetotellurics with long distance remote reference to reject DC railway noise

Wednesday, 17 December 2014
Tilman Hanstein1, John Jiang1, Kurt Strack1 and Oliver Ritter2, (1)KMS Technologies, Houston, TX, United States, (2)Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, Potsdam, Germany
Some parts of railway network in Europe is electrified by DC current. The return current in the ground is varying in space, time and power when the train is moving. Since the train traffic is active 24 hours, there is no quite time. The train signal is dominating for periods longer than 1 s and is a near field source. The transfer function of the magnetotelluric sounding (MT) is influenced by this near field source, the phase is going to zero and amplitude increase with slope 1 for longer periods. Since this dominating noise is present all day robust magnetotelluric processing technique to identify and remove outliers are not applicable and sufficient.

The remote reference technique has successfully been applied for magnetotelluric soundings Combining an disturbed local MT data set with the data of the remote station, which is recording simultaneously the horizontal magnetic fields, can improve the data quality. Finding a good remote station during field survey is difficult and expensive.

There is a permanent MT remote reference station in Germany. The set up and maintance is done by the GFZ - Helmholtz Centre Potsdam - GFZ German Research Centre for Geosciences. The location is near Wittstock and has good signal-to-noise-ratio with low cutural noise, the ground is almost lD and recording since May 2010. The electric and magnetic field is continously recorded with 250 Hz sampling and induction coils. The magnetic field is also recorded with fluxgate magnetometers and 5 Hz sampling. The distance to the local MT site is about 600 km.