GP41A-3611:
Change from inverse to normal magnetic fabrics through thermal treatment

Thursday, 18 December 2014
Hyeonjeong Kim1, Hyeongseong Cho1, Jong Ok Jeong2, Moon Son1 and Young Kwan Sohn2, (1)Pusan National University, Department of Geological Sciences, Busan, South Korea, (2)Gyeongsang National University, Department of Earth and Environmental Sciences, Jinju, South Korea
Abstract:
The Gusandong Tuff is an extensive rhyolitic ignimbrite that has been used as an excellent key bed in the Cretaceous Gyeongsang Basin, SE Korea. Magnetic fabric analysis in the tuff, using AMS (Anisotropy of Magnetic Susceptibility) technique, shows an anomalous fabric which has horizontal k3 and vertical k1 axes in several sites. The fabric is interpreted to be an inverse one attributed to single-domain magnetites. We attempted a stepwise thermal treatment to investigate the changes of AMS axes and parameters (T, PJ) in four sites (KT11B, KT11M, KT18B, KT18M). All these sites dominantly include the specimens showing the anomalous fabric. Rock magnetism shows that magnetites are the main carrier of the AMS fabric. The changing patterns of magnetic fabric during heating are classified into 4 types: (1) Type-0 is characterized by unchanged three principal axes (k1, k2, k3) over all heating steps. (2) Type-I shows the exchange of k1 and k2 axes each other. (3) Type-II is characterized by the exchange of k2 and k3 axes each other. (4) Type-III shows that three principal axes switch their positions with one another. Except for Type-0, most of the magnetic fabrics are transformed gradually. The directional changes of the axes begin between 450-580°C and then terminate near 670°C. After the thermal treatment, all the fabrics become geologically normal as vertical k3 and horizontal k1 axes. It is also notable that the beginning temperatures are nearly equal to those of inflection points in the T-PJ plots. In the sites KT18B and KT18M which showed girdle-distributed and vertical k1 axes, respectively, before the treatment, all the k1 axes become horizontally and co-directionally clustered after the treatment. This result indicates that the thermal treatment can be a strongly useful tool for eliminating the inverse AMS magnetic fabric of natural rocks. The changes of axis orientation and magnitude observed in this study can be reasonably explained with the theoretical inverse fabric model proposed by Rochette et al. (1992) and Ferré (2002). The gradual transformation of the magnetic fabrics is, however, out of accord with the model. This discrepancy is probably caused by the heterogeneity of natural rocks which have various compositions, grain sizes, orientations, shapes, and anisotropy degrees of constituent minerals.