What Can Radiocarbon Depth Profiles Tell Us About The LGM Circulation?

Monday, 15 December 2014
Andrea Burke1, Andrew Stewart2, Jess F Adkins3, Raffaele M Ferrari4, Andrew F Thompson3 and Malte F Jansen5, (1)University of St Andrews, St Andrews, KY16, United Kingdom, (2)University of California Los Angeles, Los Angeles, CA, United States, (3)California Institute of Technology, Pasadena, CA, United States, (4)Massachusetts Institute of Technology, Cambridge, MA, United States, (5)Princeton University, Atmospheric and Oceanic Sciences, Princeton, NJ, United States
Published reconstructions of radiocarbon in the Atlantic sector of the Southern Ocean indicate that there is a mid-depth maximum in radiocarbon age during the last glacial maximum (LGM). This is in contrast to the modern ocean where intense mixing between water masses along shared density surfaces (isopycnals) results in a relatively homogenous radiocarbon profile. A recent study (Ferrari et al. 2014) suggested that the extended Antarctic sea ice cover during the LGM necessitated a shallower boundary between the upper and lower branches of the meridional overturning circulation (MOC). This shoaled boundary lay above major topographic features and their associated strong diapycnal mixing, which isolated dense southern-sourced water in the lower branch of the overturning circulation. This isolation would have allowed radiocarbon to decay, and thus provides a possible explanation for the mid-depth radiocarbon age bulge. We test this hypothesis using an idealized, 2D, residual-mean dynamical model of the global overturning circulation. Concentration distributions of a decaying tracer that is advected by the simulated overturning are compared to published radiocarbon data. We test the sensitivity of the mid-depth radiocarbon age to changes in sea ice extent, wind strength, and isopycnal and diapycnal diffusion. The mid-depth radiocarbon age bulge is most likely caused by the different circulation geometry, associated with increased sea ice extent. In particular, with an LGM-like sea ice extent the upper and lower branches of the MOC no longer share isopycnals, so radiocarbon-rich northern-sourced water is no longer mixed rapidly into the southern-sourced water. However, this process alone cannot explain the magnitude of the glacial radiocarbon anomalies; additional isolation (e.g. from reduced air-sea gas exchange associated with the increased sea ice) is required.

Ferrari, R., M. F. Jansen, J. F. Adkins, A. Burke, A. L. Stewart, and A. F. Thompson (2014), Antarctic sea ice control on ocean circulation in present and glacial climates, Proceedings of the National Academy of Sciences111(24), 8753–8758, doi:10.1073/pnas.1323922111.