A 3-D Model of Stacked Thrusts in the Sevier Thrust Belt, Eastern Idaho

Tuesday, 16 December 2014
Robert W Clayton and Spencer Robert Clayton, Brigham Young University - Idaho, Geology, Rexburg, ID, United States
Using published and new geologic map data and two exploratory wells for control, we constructed a three-dimensional geological model of the Pine Creek area in the Big Hole Mountains of eastern Idaho, where stacked Sevier thrust sheets are exposed at the surface. In this area, Cretaceous crustal shortening displaced and folded strata from Cambrian to Cretaceous in age. Using geologic map data as a primary input to a 3-D model presents a number of challenges, especially representing fault geometries at depth and maintaining strata thicknesses. The highly variable attitudes measured at the surface are also difficult to represent in a subsurface model because they require extensive extrapolation to depth. To overcome these challenges we EarthVision software, which has tools for model construction with minimal data inputs and uses a minimum tension algorithm to create geologically realistic surfaces. We also constructed two primary cross-sections to constrain strata and fault geometries according to structural principles, and used these to guide construction of fault and horizon surfaces. We then designated horizons with the best control as reference horizons to constrain strata geometries, and built the remaining horizons using isochores to add or subtract from those surfaces. The model shows classic flat-ramp thrust geometries as seen farther southeast in the Wyoming section of the thrust belt. The model also shows uniform southwestward tilting of faults and strata in the north end above younger thrusts, but strong effects from a duplex on a younger thrust fault encountered in the southern well, which rotated the strata and older faults above it.