Constraints on Shear Velocity in the Cratonic Upper Mantle From Rayleigh Wave Phase Velocity

Wednesday, 17 December 2014: 8:15 AM
Aaron C Hirsch, Boston University, Department of Earth and Environment, Boston, MA, United States and Colleen A Dalton, Brown University, Department of Earth, Environmental, and Planetary Sciences, Providence, RI, United States
In recent years, the prevailing notion of Precambrian continental lithosphere as a thick boundary layer (200-300 km), defined by a depleted composition and a steady-state conductively cooled temperature structure, has been challenged by several lines of seismological evidence. One, profiles of shear velocity with depth beneath cratons exhibit lower wave speed at shallow depths and higher wave speed at greater depths than can be explained by temperature alone. These profiles are also characterized by positive or flat velocity gradients with depth and anomalously high attenuation in the uppermost mantle, both of which are difficult to reconcile with the low temperatures and large thermal gradient expected with a thermal boundary layer. Two, body-wave receiver-function studies have detected a mid-lithospheric discontinuity that requires a large and abrupt velocity decrease with depth in cratonic regions that cannot be achieved by thermal gradients alone. Here, we used forward-modeling to identify the suite of shear-velocity profiles that are consistent with phase-velocity observations made for Rayleigh waves that primarily traversed cratons in North America, South America, Africa, and Australia. We considered two approaches; with the first, depth profiles of shear velocity were predicted from thermal models of the cratonic upper mantle that correspond to a range of assumed values of mantle potential temperature, surface heat flow, and radiogenic heat production in the crust and upper mantle. With the second approach, depth profiles of shear velocity were randomly generated. In both cases, Rayleigh wave phase velocity was calculated from the Earth models and compared to the observed values. We show that it is very difficult to match the observations with an Earth model containing a low-velocity zone in the upper mantle; instead, the best-fit models contain a flat or positive velocity gradient with depth. We explore the implications of this result for the thermal and compositional properties and long-term stability of the cratonic upper mantle.