Diverse Primitive Basalts from an Extensional Back-arc Setting, Fort Rock Volcanic Field, Oregon.

Wednesday, 17 December 2014
Frank Michael Popoli Jr and Mariek E Schmidt, Brock University, St Catharines, ON, Canada
The Pleistocene to Pliocene Fort Rock Volcanic Field (FRVF), situated in a back-arc extensional setting ~65 km east of the Central Oregon High Cascades has erupted a diverse array of basaltic magmas, including some primitive compositions with an Mg#>60. Major and trace element concentrations have been determined for 80 mafic bulk lava samples by X-ray Fluorescence (XRF) and selected minerals by electron microprobe. Petrological and geochemical data suggest three primitive basalt end-members similar to basalts in the nearby Oregon Cascade arc and High Lava Plains: high-alumina olivine tholeiite or low-K tholeiites (LKT), calc-alkaline basalts (CAB), ocean island basalts (OIB). Primitive Mg# (61-68) HAOTs are aphyric to phenocryst-poor (~2-5 %) olivine and plagioclase bearing and diktytaxitic. HAOTs are distinguished by low K2O (0.22-0.44 wt%), high Al2O3 (17.19-18.67 wt%) and CaO contents. CABs are the most dominant basalt type in the area with higher large ion lithophile element (LILE) concentrations (e.g., 170-426 ppm Ba) relative to high field strength elements (HFSE; 4.6-10.4 ppm Nb) and lower Mg#s (60-64) than HAOTs. CABs have more abundant (~5-15 %) and larger phenocrysts (~2-4 mm) of olivine and plagioclase than in HAOTs. OIBs contain higher Nb contents ranging from 11.7-18.6 ppm (vs. 3.0-7.2 ppm in HAOTs). OIBs are similar to both HAOTs and CABs, ranging from aphyric to porphyritic and diktytaxitic and may include amphibole phenocrysts. Tectonic extension associated with the Basin and Range in this area likely facilitated eruptions of primitive magmas. A comparison of the most primitive magmas (HAOTs with Mg#>65) found in eastern and western FRVF indicates that the western HAOTs contain higher incompatible element concentrations relative to eastern HAOT (Ba, Sc, Sr, Zr, Nb), which may reflect lower degrees of melting of a more enriched mantle source to the west.