Is Nubia plate rigid? A geodetic study of the relative motion of different cratonic areas within Africa.

Tuesday, 16 December 2014
Mary Wambui Njoroge1, Rocco Malservisi2, Urs Hugentobler3, Morad Mokhtari3 and Dennis Voytenko2, (1)University of South Florida Tampa, Tampa, FL, United States, (2)University of South Florida, Tampa, FL, United States, (3)Technical University of Munich, Munich, Germany
Plate rigidity is one of the main paradigms of plate tectonics and a fundamental assumption in the definition of a global reference frame as ITRF.

Although still far for optimal, the increased GPS instrumentation of the African region can allow us to understand how rigid one of the major plate can be. The presence of diffused band of seismicity, the Cameroon volcanic line, Pan African Kalahari orogenic belt and East Africa Rift suggest the possibility of relative motion among the different regions within the Nubia. The study focuses on the rigidity of Nubia plate. We divide the plate into three regions: Western (West Africa craton plus Nigeria), Central (approximately the region of the Congo craton) and Southern (Kalahari craton plus South Africa) and we utilize Euler Vector formulation to study internal rigidity and eventual relative motion.

Developing five different reference frames with different combinations of the 3 regions, we try to understand the presence of the relative motion between the 3 cratons thus the stability of the Nubia plate as a whole. All available GPS stations from the regions are used separately or combined in creation of the reference frames. We utilize continuous stations with at least 2.5 years of data between 1994 and 2014.

Given the small relative velocity, it is important to eliminate eventual biases in the analysis and to have a good estimation in the uncertainties of the observed velocities. For this reason we perform our analysis using both Bernese and Gipsy-oasis codes to generate time series for each station. Velocities and relative uncertainties are analyzed using the Allan variance of rate technique, taking in account for colored noise. An analysis of the color of the noise as function of latitude and climatic region is also performed to each time series.

Preliminary results indicate a slight counter clockwise motion of West Africa craton with respect to South Africa Kalahari, and South Africa Kalahari-Congo Cratons. In addition, a possible counter clockwise rotation of the South African Kalahari craton with respect to the Nubian plate caused by southward propagation of the East Africa Rift is compatible with the observations. However, the results are at the limit of the statistical significance and within the current velocity uncertainties the Nubia plate appears as single- rigid plate.