The Physical and Biochemical Alteration of the Platte River by Phragmites australis, an Invasive Species of Wetland Grass

Wednesday, 17 December 2014
Rachel C Mohr1, Russell Krueger1, Laura Triplett1, Tal Michal2 and Karin M Kettenring3, (1)Gustavus Adolphus College, Saint Peter, MN, United States, (2)Aix Marseille University, Marseille Cedex 03, France, (3)Utah State University, Logan, UT, United States
Invasive species can have a profound impact on the ecosystems to which they are introduced. Beginning in 2003, the Platte River, Nebraska, USA, was invaded by an aggressive species of wetland grass, Phragmites australis. The invasion by Phragmites, in combination with river flow reductions due to agricultural irrigation, has drastically altered the character and morphology of the river. Once a braided and largely unvegetated river, the Platte had become densely colonized with vegetation by 2010. We measured some physical and biochemical characteristics of Platte River sediments to infer how that vegetation has changed the system. Specifically, we measured particle size, which is an indicator of flow velocity, and biogenic silica (BSi), which is a critical source of silicon for some aquatic organisms. Sediment was collected from areas of the riverbed that are unvegetated, and from areas that are occupied by Phragmites or native vegetation. Particle size was measured using a laser diffractometer to determine how much fine particle deposition was occurring. Biogenic silica (BSi) concentrations were measured using timed NaOH digestions and inductively coupled plasma mass spectrometry (ICP-MS). Our results indicate that stands of Phragmites in the Platte River cause more deposition of finer silt-sized particles than other parts of the river that are unvegetated or are occupied by native vegetation. Also, Phragmites increased the sequestration of BSi in the river sediments. These changes to the Platte reverberate beyond the river itself; by sequestering silica in sediments, Phragmites could be diminishing the supply of silica to estuaries and coastal oceans. Hypothesizing that the silica content of the Platteā€™s water had been reduced by the arrival of Phragmites, we measured dissolved (DSi) and biogenic silica (BSi) concentrations of Platte water using ICP-MS to compare to existing data from the 1990s.