B51J-0142:
A Combined Molecular and Isotopic Study of Anoxygenic Photosynthesis in Meromictic Lakes of the Northwestern United States

Friday, 19 December 2014
James Howard Harris IV1, William Gilhooly III1, Edward J Crane III2, Byron Steinman3 and Marlie Rebecca Shelton2, (1)Indiana University Purdue University Indianapolis, Indianapolis, IN, United States, (2)Pomona College, Earth Sciences, Claremont, CA, United States, (3)University of Minnesota Duluth, Earth Sciences, Duluth, MN, United States
Abstract:
Sulfur isotope fractionations within the chemocline can be an indication of green and purple sulfur photosynthetic activity. This isotopic signal is, however, small and variable, on the order of +2-6‰ (Zerkle et al. 2009). It is therefore advantageous to investigate the environmental and ecological effects on this signal so that these influences can be taken into account when estimating the contribution of anoxygenic phototrophs to the sulfur cycle in aquatic environments.

This project aims to investigate the ways in which anoxygenic phototroph community structure and lake water geochemistry impact the sulfur isotope fractionation expressed during anoxygenic photosynthesis in meromictic lakes. During the summer of 2013, water column profile analysis of six lakes in the Pacific Northwest (located in eastern Washington and western Montana) were conducted to assess photosynthetically available radiation, salinity, pH, temperature, dissolved solids, and specific conductivity. Water column samples were obtained to determine the sulfur isotopic composition of dissolved sulfate and sulfide, major ion and sulfide concentrations. Microbial samples were also collected for genetic sequencing. Initial results found green (e.g., Chlorobiaceae sp.) and purple (e.g., Lamprocystis purpurea) bacteria at the same depth in one of the study lakes. These data, in addition to the same suite of samples collected in the summer of 2014, provide insight into relationships between the isotopic composition of sulfur (in H2S, S0, and SO4), lake water chemistry, and the presence or absence of green and purple sulfur bacteria.