MR11A-4286:
Neutron Diffraction of Aqueous Tetramethylammonium Chloride (TMA) Solutions and TMA Intercalated Swelling Clays Under Burial Conditions

Monday, 15 December 2014
Radhika Patel1, Christopher A Howard1, Chris Greenwell2, Tristan Youngs3, Alan K Soper3 and Neal T Skipper1, (1)University College London, London, United Kingdom, (2)University of Durham, Durham, United Kingdom, (3)Rutherford Appleton Laboratory, Didcot, United Kingdom
Abstract:
There is a need for the improvement and optimisation of clay swelling inhibitors for the enhancement of oil and gas exploration. The hydration region of both ions and the possibility of ion pairing in 1 molar aqueous solution of clay swelling inhibitor, tetramethylammonium chloride (TMACl), in D2O, under elevated hydrostatic-pressures and temperatures has been determined with unprecedented detail using a combination of neutron diffraction and small-angle scattering in conjunction with hydrogen/deuterium isotopic labeling. The O-H correlation function (H-bonds) for the water in the 1.0M solution is measured and compared with that for pure D2O. Also investigated is the effect of burial conditions on the d-spacing of TMA-intercalated vermiculite. Contrary to expectations, no aggregation of TMA ions due to hydrophobic interactions is observed, nor are any ionic pairs of TMA+ and Cl- at these burial conditions. The data revealed a more ordered water-water structure with the addition of TMACl from bulk D2O. There is no change in the hydration structure measured at the applied elevated conditions. This is in remarkable contrast to pure water at the same conditions which is well known to be compressible. The dry d-spacing of the TMA-exchanged Eucatex vermiculite is measured at 13.66 Å which increases to 14.03 Å with the addition of D2O. Beyond this, there is no change in d-spacing with increasing pressure and temperature indicating the strength of the TMA ions binding to the clay interlayers and therefore its performance as a clay-swelling inhibitor.