EP53A-3610:
Geospatial Characterization of Fluvial Wood Arrangement in a Semi-confined Alluvial River
Friday, 19 December 2014
Derek J Martin, Appalachian State University, Boone, NC, United States, Carol P Harden, Univ Tennessee, Knoxville, TN, United States and Robert T Pavlowsky, Missouri State University, Springfield, MO, United States
Abstract:
Large woody debris (LWD) has become universally recognized as an integral component of fluvial systems, and as a result, has become increasingly common as a river restoration tool. However, “natural” processes of wood recruitment and the subsequent arrangement of LWD within the river network are poorly understood. This research used a suite of spatial statistics to investigate longitudinal arrangement patterns of LWD in a low-gradient, Midwestern river. First, a large-scale GPS inventory of LWD, performed on the Big River in the eastern Missouri Ozarks, resulted in over 4,000 logged positions of LWD along seven river segments that covered nearly 100 km of the 237 km river system. A global Moran’s I analysis indicates that LWD density is spatially autocorrelated and displays a clustering tendency within all seven river segments (P-value range = 0.000 to 0.054). A local Moran’s I analysis identified specific locations along the segments where clustering occurs and revealed that, on average, clusters of LWD density (high or low) spanned 400 m. Spectral analyses revealed that, in some segments, LWD density is spatially periodic. Two segments displayed strong periodicity, while the remaining segments displayed varying degrees of noisiness. Periodicity showed a positive association with gravel bar spacing and meander wavelength, although there were insufficient data to statistically confirm the relationship. A wavelet analysis was then performed to investigate periodicity relative to location along the segment. The wavelet analysis identified significant (α = 0.05) periodicity at discrete locations along each of the segments. Those reaches yielding strong periodicity showed stronger relationships between LWD density and the geomorphic/riparian independent variables tested. Analyses consistently identified valley width and sinuosity as being associated with LWD density. The results of these analyses contribute a new perspective on the longitudinal distribution of LWD in a river system, which should help identify physical and/or riparian control mechanisms of LWD arrangement and support the development of models of LWD arrangement. Additionally, the spatial statistical tools presented here have shown to be valuable for identifying longitudinal patterns in river system components.