T13C-4663:
Seismic and Aseismic Slip on the San-Jacinto Fault Near Anza, CA, from Joint Analysis of Strain and Aftershock Data

Monday, 15 December 2014
Jean-Philippe Avouac, Asaf Inbal and Jean Paul Ampuero, California Institute of Technology, Pasadena, CA, United States
Abstract:
The San-Jacinto Fault (SJF) is the most active fault in southern California, which together with the southern San-Andreas Fault accommodates a large fraction of the motion across the plate boundary. Seismicity along the SJF is distributed over several fault segments with distinct spatio-temporal characteristics. One of these segments, known as the Anza seismic gap, is a 25 km long strand almost devoid of seismicity. In recent years, four M4-5 events occurred SE of the gap. Despite their moderate magnitudes, these earthquakes triggered rich aftershock sequences and pronounced afterslip that lasted for several weeks, and was well captured by nearby PBO borehole strain meters. A similar transient was remotely triggered by the 2010 El Mayor-Cucapah earthquake. Geodetic and seismic observations following a local M5.4 mainshock indicate that afterslip propagated unilaterally towards the NW at speed of about 5 km/day. We infer the distribution of slip via a joint inversion of the aftershock and strain data. Our approach is based on Dieterich's (1994) model relating the evolution of seismicity rate to applied stresses, within the framework of rate-and-state friction. This approach provides resolution power at depths inaccessible to the surface geodetic network. Moreover, it allows us to gain important insights onto the fault mechanical properties. We apply this inversion scheme to episodes that occurred during 2010. Remarkably, we find that the cumulative moment released post-seismically during the locally triggered transient is 5-10 times larger than the moment of the mainshock. We show that the data favour a model in which deep slip transients, which may develop due to local or remote earthquakes, occur on a weak, close-to-velocity-neutral fault. The transients increase the stress along the Anza gap, and trigger earthquakes outside it through static stress transfer.