A51E-3090:
The Role of Atmospheric Cloud Radiative Effect in Net Energy Transport in the Tropical Warm Pool

Friday, 19 December 2014
Bryce E Harrop, University of Washington Seattle Campus, Atmospheric Sciences, Seattle, WA, United States and Dennis L. Hartmann, University of Washington, Department of Atmospheric Sciences, Seattle, WA, United States
Abstract:
We use ERA-Interim and CERES data to calculate the energy budget of the tropical atmosphere as a function of sea surface temperature. We emphasize the role of the atmospheric cloud radiative effect (ACRE; the change in the radiative heating rate of the atmosphere due to the presence of clouds), which causes a heating of the atmosphere by trapping radiation that would otherwise be lost to space, and which then increases the requirement for the atmosphere to export energy from convective regions. Over the warm pool (10 S – 10 N, 150 – 180 E), the ACRE is shown to be roughly half the value of the net energy transport (~40 W/m2 ACRE from CERES data compared to ~70 W/m2 net energy transport calculated from ERA-Interim). Additionally, we show that over areas of warm SSTs (> 300 K), both ACRE and the energy transport increase with increasing sea surface temperature (SST). The increase in ACRE mirrors the increase in energy transport, suggesting that the increase in energy transport over warmer SSTs is largely driven by radiative heating from the clouds. The net cloud radiative effect at the top of the atmosphere is remarkably insensitive to SST, however.