Understanding dynamic pattern and process across spatial scales in river systems using simultaneous deployments of in situ sensors

Monday, 15 December 2014: 5:45 PM
Wilfred M Wollheim, Gopal Mulukutla, Chris Cook and Richard O Carey, Univ New Hampshire, Durham, NH, United States
Biogeochemical conditions throughout aquatic landscapes are spatially varied and temporally dynamic due to interactions of upstream land use, climate, hydrologic responses, and internal aquatic processes. One of the key goals in aquatic ecosystem ecology is to parse the upstream influences of terrestrial and aquatic processes on local conditions, which becomes progressively more difficult as watershed size increases and as processes are altered by diverse human activities. Simultaneous deployments of high frequency, in situ aquatic sensors for multiple constituents (e.g. NO3-N, CDOM, turbidity, conductivity, D.O., water temperature, along with flow) offer a new approach for understanding patterns along the aquatic continuum. For this talk, we explore strategies for deployments within single watersheds to improve understanding of terrestrial and aquatic processes. We address applications regarding mobilization of non-point nutrient sources across temporal scales, interactions with land use and watershed size, and the importance of aquatic processes. We also explore ways in which simultaneous sensor deployments can be designed to improve parameterization and testing of river network biogeochemical models. We will provide several specific examples using conductivity, nitrate and carbon from ongoing sensor deployments in New England, USA. We expect that improved deployments of sensors and sensor networks will benefit the management of critical freshwater resources.