B53E-0239:
River-Lake Mixing, Eutrophication, and Hypoxia in Green Bay, Lake Michigan

Friday, 19 December 2014
Jeffrey Val Klump and Shelby LaBuhn, Univ Wisconsin Milwaukee, Milwaukee, WI, United States
Abstract:
Despite being a freshwater system, Green Bay in Lake Michigan, has many estuarine-like characteristics, including water mass exchange and the mixing between riverine inflow and the open lake. The bay has experienced excessive nutrient loading for decades resulting in hyper-eutrophic conditions and extensive algal blooms. Combined with a restricted, estuarine like circulation, this has resulted in the reoccurrence of late summer “dead zones” and wide spread bottom water oxygen concentrations below water quality standards. The onset of hypoxia is clearly related to thermal stratification which, in Green Bay, arises both from direct atmospheric forcing, i.e. low winds, high air temperatures, and increased solar radiation, and from indirect atmospheric forcing that drives circulation patterns resulting in the southerly incursion of cooler Lake Michigan bottom waters onto highly reducing organic rich sediment deposits. This circulation pattern can re-stratify a well-mixed water column within hours, and can set up stable stratified water column conditions that persist for days to weeks during which time sediment oxygen demand rates are sufficient to completely deplete hypolimnetic oxygen. Modeling hypoxia, therefore, is somewhat more complex than in a system which is driven largely or solely by seasonal thermal fluctuations. Understanding both the general circulation and the onset and duration of stratification in the bay are essential to determining the potential for hypoxic conditions to improve or worsen, particularly in the face of climate change projections of warmer conditions, less ice cover, and an earlier summer. Using D and O-18 isotopes in water, Rn-222, and dissolved methane as tracers we examine the relationship between river/lake mixing, transport rates and oxygen depletion in an attempt to verify the spatial and temporal scales of hypoxia in the bay, and estimate the potential impact of future climate change projections.