EP21D-3561:
Integrated Laser Microprobe (U-Th)/He and U/Pb Dating of Titanite and Zircon
Tuesday, 16 December 2014
Matthijs C Van Soest1, Alexandra Horne1, Kip V Hodges1 and Alka Tripathy-Lang2, (1)Arizona State University, Tempe, AZ, United States, (2)Berkeley Geochronology Center, Berkeley, CA, United States
Abstract:
The application of laser technologies for high spatial resolution dating has proven to be an important advancement in (U-Th)/He thermochronology. Excimer laser microprobes have been used to successfully date high U+Th minerals and are an especially promising way to determine the distribution of (U-Th)/He zircon ages in detrital sedimentary samples. We have also found that another detrital mineral, titanite, may be amenable to this method as well. While titanite contains lower concentrations of parent isotopes than zircon, and consequently less radiogenic 4He, its typically larger grain size allows for these characteristics to be mitigated by the use of larger laser beam diameters during the ablation process. With the integrated use of ICPMS, an established method for U/Pb geochronology, this phase of the laser microprobe (U-Th)/He technique can be modified slightly to enable (U-Th)/He and U/Pb ‘double’ dating of detrital samples. Here we present a proof of concept study demonstrating the viability of integrated laser microprobe (U-Th)/He and U/Pb through dating Oligocene Fish Canyon tuff titanite and zircon from Colorado. Our use of a well characterized sample with established (U-Th)/He and U/Pb dates allows us to fully evaluate the utility of this technique. By selecting medium- to fine-grained crystals we are able to simulate a realistic, uni-modal detrital sample. Using our modified laser microprobe approach, we are able to reproduce the expected age modes with an analytical imprecision roughly twice that of more established methods, a difference that has little practical effect on geologic interpretations. Additionally, we believe that the technique could prove a viable method for double dating detrital rutile and apatite, so long as characteristically lower U+Th concentrations in these minerals are balanced by appropriately scaled ablation pits in an aliquot unbiased by the need for larger detrital grains. Ultimately, integrated laser microprobe U/Pb and (U-Th)/He dating of multiple detrital accessory minerals can be an exceptionally valuable tool for identifying sedimentary provenance and evaluating the exhumation history of a source region.